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Abstract

Near infrared spectroscopy was employed to analyse samples of pork sausage meat used in the manufacturing of typical Spanish sau-
sages (minced and homogenized product). As well, two modes of analysis for the instrument were compared. Data from proximate anal-
ysis (fat, moisture and protein) were put into a calibration model by a diode array NIR spectrometer. The spectral range used was 515–
1650 nm and different mathematical pre-treatments on the signal (derivatives and scatter corrections) were also compared. Different
mathematical pre-treatments caused considerable changes in the statistics of the models (coefficients of determination and standard
errors). R2 (calibration) and standard errors of prediction (SEP, external validation) in minced sausage meat for fat, moisture and protein
were 0.98, 0.98 and 0.93 (R2) and 1.38%, 1%, 0.83% (SEP), respectively. These values in homogenised sausage meat for fat, moisture and
protein were 0.99, 0.98 and 0.93 (R2), and 0.94%, 0.76% and 0.87% (SEP), respectively.
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1. Introduction

The meat trade plays an important role in the food and
agricultural industry overall, providing added value to its
economy. Specifically, in Spain, the pork trade is of partic-
ular importance, making up 30.2% of the final livestock
production and 10.4% of the final agrarian production
(MAPA, 2004). Thus, Spain is the second largest producing
country in the European Union, after Germany, account-
ing for 18.6% of the total production in 2003, and 3.8%
on a global scale.

Dry-cured pork sausages are widely consumed in Spain,
and the production of the typical ‘‘salchichón’’ sausage is
particularly important. This sausage is obtained in the
same way as other dry-cured sausages, after mixing, casing,
fermentation and ripening. In order to manufacture this
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Table 1
Iberian and Standard pork used in each treatment

Treatment

A B C D E

Iberian
(kg)

18 (100%) 13.5 (75%) 9 (50%) 4.5 (25%) 0 (0%)

Standard
(kg)

0 (0%) 4.5 (25%) 9 (50%) 13.5 (%) 18 (100%)
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type of sausage, several cuts of lean and fatty meat are
used, generally excluding meat that is of higher commercial
value, in other words, ham, shoulder and loins. According
to the Spanish quality standard (BOE 21/03/1980), the
commercial category awarded to dry-cured sausages is
mainly based on their fat, moisture and protein contents.
The fat and protein contents depend on the raw material
used, which is not homogeneous, since the cuts of meat

are obtained when the carcasses are carved up. The mois-
ture content, which is inversely related to the fat content,
will depend on the initial moisture, and the time and con-
ditions in which the product is ripened Therefore, it is a
parameter that should be controlled during manufacturing.
Hence, it is important for industry to be able to control the
levels of these constituents in fresh sausage meat in an effi-
cient way, before it is made into actual sausages, so it can
be adjusted to legally required levels and internal quality
standards.

Currently, quantitative information about the composi-
tion of the product is not often included on the label. This
lack of information has an important effect on consumers,
since they are unable to differentiate between products with
different nutritional contents when purchasing.

Consumers demand accurate and fast quality control in
the different phases of the manufacturing process of these
sausages. Hence, near infrared spectroscopy (NIRS) has
emerged as a tool for quality assurance by determining
the basic nutritional compounds that make up the product:
it is quick, reliable, requires no chemicals and is easy to
operate (Thyholt, Indahl, Hildrum, & Ellekaer, 1997).

NIR technology is used in the meat industry for proxi-
mate analysis. Specific instruments are available to deter-
mine the fat, moisture and protein contents of ground
meat and meat products (Osborne, 2000).

How the sample is handled in relation to the instrument
is critical in NIR analysis. Flexibility of measurement
modes may be important to the success of developing a
method (Stark & Luchter, 2003). Therefore, in this study,
a NIR instrument was sought that could be quickly
adapted in order to analyse the various different phases
in the manufacturing of the target product (‘‘salchichón’’),
that is to say, minced sausage meat, homogenised sausage
meat, and the cured product. Hence, we opted for a Perten
diode array reflectance spectrometer (DA-7000 model)
since the measurements are very quick and non-invasive,
covering the range 400–1700 nm.

Solberg (2000) used reflectance measurement with a Per-
ten DA-7000 on unskinned and filleted salmon. She stated
that it might be possible to grade the whole salmon and sal-
mon fillets on-line with greater accuracy according to the
fat content. Subsequently, Solberg (2003) studied the use
of this diode-array NIR measurement as a screening
method to determine the crude fat content in live-farmed
Atlantic salmon, making it suitable for on-line analysis.
Anderson and Walker (2003) studied the incorporation
ability of Perten DA-7000 VIS/NIR analysis of ground
beef for process control and they concluded that the equip-
ment is suitable for on-line measurements. Using the same
diode-array NIR analysis in the meat industry, Fumière,
Sinnaeve, and Dardenne (2000) investigated how to differ-
entiate between ‘slow-growing’ and ‘industrial’ chicken
strains. These authors discuss the possibility of integrating
the technique into an analytical system of surveillance for
certified meat products. Chan, Walker, and Mills (2002)
used this NCR instrument to assess the quality of fresh
pork loin. They obtained calibration models for moisture,
fat and protein contents, concluding that NIR reflectance
can be used to predict some quality traits for whole fresh
raw pork chops. Geesink et al. (2003) also achieved high-
quality predictions for pork quality attributes using NIRS,
but with a different spectrometer.

Our study measured visible/near-infrared spectra in the
fresh sausage meat – minced and homogenised – used for
manufacturing dry-cured pork sausages (‘‘salchichón’’).
Spectra from the finished product (cured, then fermented
and ripened) will be discussed in a later paper. Our aim
was to evaluate the accuracy of prediction models for fat,
moisture and protein, using four sample presentations with
a diode array Perten DA-7000 spectrometer, and to study
the most suitable sample presentation.

2. Material and methods

2.1. Raw material/preparation

2.1.1. Meat and experimental design

The pork meat used consisted of lean meat from the
breeds most commonly used in Spain for manufacturing
sausages. These breeds were Iberian and Standard. The
Iberian pigs were obtained from a set of individuals regis-
tered in the Iberian breed genealogical catalogue. The Stan-
dard pigs were obtained from known herds of Landrace
pigs. As soon as the meat was received from the slaughter-
house it was immediately frozen and stored that way until
the experiments began.

In order to study a wide range of variability on the raw
material most commonly used in the Spanish meat indus-
try, in this study, two trials (manufacturing stages) were
designed, and treatments using different percentages were
set up as follows:

Trial 1: Five treatments were set up for different combi-
nations of meat from Iberian (I) and/or Standard(S)
pork. These treatments were A (100% I), B (75%
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I–25% S), C (50% I–50% S), D (25% I–25% S) and E
(100% S).
Trial 2: The same design was repeated after 8 days.

In each trial, 45 kg of Iberian pork and 45 kg of
Standard pork were used in the proportions indicated in
Table 1.

2.1.2. Meat additives

Standard additives commonly used in the Spanish meat
industry were also applied in our experiments and included
in the sausage meat. In each treatment (18 kg) the follow-
ing were included: fine salt (400 g), dextrose (18 g), thyme
(36 g), nitrifier (36 g), wine (0.35 l), garlic (90 g), ground
black pepper (45 g), polyphosphate (18 g) and ascorbic acid
(9 g). These additives improve the ripening process and
produce very specific sensorial effects on the smell, taste
and flavour.

2.2. Meat processing and sampling

In this study, we used the same ingredients and standard
procedures as are commonly applied by the Spanish meat
industry when manufacturing ‘‘salchichón’’ sausage. For
this reason, all the stages were carried out in the meat pro-
cessing plant of the IFAPA research centre.

2.2.1. Minced meat samples

Raw meats, from both animal origins (Iberian and Stan-
dard), were thawed at room temperature, subsequently and
separately, and then ground with a meat grinder (Sam-
mic�, Mod. G85 R-Olotinox 22). The ground meat was
then mixed manually for 15 min and then mechanically
with a kneader-mixer (Mainca, Equipamientos cárnicos
S.L., Mod. BM 35) for 20 min. At this time the additives
were added, according to the Martin–Bejarano formula
(Martı́n, 1992). The sausage meat was then left to rest at
4 �C for 24 h. Ten samples of each treatment were then
immediately set up (300 g/sample), giving 50 samples for
each trial or 100 samples for the whole study. After the
minced samples were analyzed by NIRS, they were kept
frozen (�20 �C) prior to further analysis.

2.2.2. Homogenised meat samples

In order to observe the effect of homogenisation on the
accuracy of the NIR predictive models, the minced samples
were thawed and homogenised using a standard commer-
cial blender (Moulinex�) equipped with horizontal blades,
and shortly afterwards they were also analyzed by NIRS.
Thus, a total of 100 homogenised meat samples were made
(50 samples/period).

2.3. Spectra acquisition

2.3.1. Spectrometer

The instrument used for spectra acquisition was a Diode
Array NIR/VIS (Perten 7000, Perten Instrument, Hudd-
inge, Sweden), which uses two diode arrays, simultaneously
processing records of light reflected from a sample by the
diode sensors. The first array detects from 400 to 950 nm,
and the second from 950 to 1700 nm. The spectrometer
interpolates the date to produce one point at every 5 nm
from 400 to 1700 nm, giving a 261 data point spectrum.
Accordingly, the DA-7000 takes a spectral measurement
every 1/30 s, and 30 spectral readings were measured and
averaged.

When the computer processing time is factored in, the
sampling time for the instrument is approximately 2 s.
The DA-7000 emits a chopped, high intensity white light
from a tungsten halogen lamp that is inside a cabinet.
The light is directed at an angle through a rectangular win-
dow toward the sample, which reflects light back down
through the rectangular window into the detection module.

The instrument design allows two modes of analyses:
‘‘Down-view’’ and ‘‘Up-view’’. The first uses a circular cap-
sule with a diameter of 12.7 cm, taking spectral informa-
tion at different points of the sample when the capsule
spins. In order to use the second mode, the instrument
was inverted and the sample was placed directly over a
quartz window with a diameter of 12.7 cm. Fig. 1 shows
both modes of analysis.

2.3.2. Sample presentation

All the samples used in this study were analysed by both
modes of analysis explained above.

Two types of products were scanned with the two modes
of analysis (minced and homogenised). Therefore, four
sample presentations were used. First, the usage meat
was mixed with the additives and then minced, thus obtain-
ing ‘‘minced fresh sausage meat’’. This was the first prod-
uct, which used for sample, presentations MD and MU
(Minced ‘Down-view’ and Minced ‘Up-view’, respectively).
Next, the ‘‘minced fresh sausage meat’’ was homogenised,
giving ‘‘homogenised fresh sausage meat’’ for the HD
(Homogenised ‘Down-view’) and HU (Homogenised ‘Up-
view’) presentations.

2.3.3. Spectra

Since the experiment was repeated twice in different peri-
ods or phases, a total of 100 samples of each sample pre-
sentation were scanned. Thus, 400 samples were analysed
by 197 NIRS.

All sample spectra were collected five times; thus a total
of 2000 spectra were taken for this study. Subsequently, the
spectral data treatment was performed on the average
spectra.

When taking spectra in the Up-view mode, each sample
was placed on the uppermost spectrometer window as a flat
coating, 2–3 cm thick, and the minced sausage meat was
spun after every scan. For the Down-view mode, samples
were inserted into the round spinning capsule, and the
minced sausage meat was shaken after each scan. A similar
procedure was followed to obtain spectra from the homog-
enised sausage meat.



Fig. 1. Perten DA-7000 instrument modes of analysis (A: Down-view; B: Up-view) used in the spectral acquisition.
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2.4. Chemical analysis

Once the spectral information was acquired, a repre-
sentative amount of each sample was obtained (50 g),
and then transported to the Regional Laboratory of the
Department of Agriculture and Fishing (Andalusia’s
Regional Government), located at the ‘‘Alameda del
Obispo’’ campus, where the nutritional parameters fat,
moisture and protein were determined. Official meat and
meat product analysis methods were used (MAPA,
1993), in accordance with the ISO-1443 standard in order
to determine fat, and the international standards ISO-R-
1442 and ISO R-937, in order to determine moisture
and protein respectively.
2.5. Data analysis

2.5.1. General

Spectra were exported to WinISI III file (v1.50, Infrasoft
International, Port Matilda, PA, USA) for data processing
and statistical techniques were applied. The chemometric
analysis procedure consists of the following steps.
2.5.2. Spectral data quality

In order to obtain a representative and quality spectrum
per sample, the RMS (root mean squared) statistic was
used (Shenk & Westerhaus, 1995a, 1995b), which calculates
the similarity between different spectra of a sample, mini-
mizing the various sources of error. In the present study,
five spectra per sample were obtained, using the following
expression in order to calculate them

RMSj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðY ij � Y 2

i Þ
n

s

where n is the number of data (absorbance readings), Yij is
the absorbance value log (1/R) for the sub-sample j at
wavelength i (ki) and Y i is the absorbance value log (1/R)
for the average spectrum of a sample at wavelength i(ki).

The RMS value obtained in each case was multiplied
by 106 in order to avoid working with excessively small
values.
In order to determine a RMS cut-off value in each sam-
ple presentation, the average RMS value was calculated,
along with the standard deviation (STD) per sample

STD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1

ðRMSjÞ2 N � 1=

vuut

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

i¼1

Xn

j¼1

ðY ij � Y iÞ2 nðN � 1Þ=

vuut
where N is the number of sub-samples.

Since the expression of STD (error variance) follows a v2

distribution, a limit was used

STDlimit ¼ 1:036�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK¼m

K¼1

STD2
K m=

vuut ¼ 1:036�
ffiffiffiffiffiffiffiffiffiffiffiffi
STD2

q

where m is the number of samples.
The STDlimit values were used to obtain RMScut off.

Thus, any spectra in a sample that were above this limit
were eliminated, and recalculations were performed until
all the values found were below the RMScut off.

2.5.3. Principal component analysis

Principal component analysis (PCA) was used to develop
a study of the spectral population, before developing the
predictive models. This analysis eliminates redundant infor-
mation resulting from high correlations between absorban-
cies in different regions of the spectra. Therefore, a linear
combination of variables is defined, in a benchmark system
in which the axes are linearly independent. Thus, the initial
information is synthesised, by reducing the number of vari-
ables, explaining the same variability practically.

Once the PCA was carried out on each sample presenta-
tion, the centre of the spectral populations was determined
in order to detect anomalies and samples with the charac-
teristic behaviour. These anomalies could have a detrimen-
tal effect on the quality of the calibration models (Pizarro,
Esteban-Dı́ez, Nistal, & González-Sáiz, 2004).

After the centre of each population was calculated, the
distance of each sample from the centre was subsequently
determined. The Mahalanobis distance (H) (Otto, 1999)
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was used, and the limit established for a sample to be con-
sidered anomalous was H > 3 (Shenk & Westerhaus, 1996).

2.5.4. Calibration and validation

The collective employed in each sample presentation
(N = 100 samples) was divided into two groups. The first
one was constituted by 80 samples (calibration set) and
they were used to develop the predictive models. The sec-
ond one (validation set) consisted of 20 samples and they
were used to validate the models. These samples were ran-
domly selected, taking two of each of the five treatments
(A, B, C, D and E) in each of the two periods described
in Sections 2.1 and 2.2.

First, calibration models were produced using modified
partial least squared (MPLS) regression with internal cross
validation (six cross validation groups) to avoid overfitting
(Shenk & Westerhaus, 1995a, 1995b). For each of the four
sample presentations, 20 equations were determined for
each parameter, as a result of the different derivative and
scattered radiation correction treatments applied to the
spectra (Fig. 2).

Once the best MPLS models had been selected for each
parameter in each sample presentation, with a specific
combination of treatments, regression models were
applied to the principal components (PCR) using the
same combination in order to compare the two calibra-
tion strategies.

The criteria used to select the best models were few stan-
dard errors and a high regression coefficient of determina-
tion, both in calibration (SEC, R2) and in cross validation
(SECV, r2) (Workman, 2001). Furthermore, in order to
evaluate the predictive ability of the calibration models,
the residual predictive deviation (RPD) was used. The
RPD is the relationship between the standard deviation
(SD) of the population’s reference values and the standard
error of cross validation (SECV). If the RPD > 3, the pre-
dictive ability of the model could be considered very good
(Williams & Sobering, 1996).
Fig. 2. Flow chart of derivative treatments and

Table 2
Reference values of the calibration and validation sets

Constituent Calibration set

N Mean SD Rang

Fat (%) 80 20.27 7.31 8–
Moisture (%) 80 58.94 5.3 50.2–
Protein (%) 80 16.7 2 12.7–
In calibration, the software identifies chemical anoma-
lies (T), that is to say, samples in which the reference values
differ from those predicted by NIRS. These anomalies are
identified using the student’s T statistic (quotient between
the difference between the reference and the predicted value
and the SEC). Samples with a value T > 2.5 were consid-
ered chemically anomalous.

The behaviour of the external validation group used in
the different models was evaluated using the standard error
of prediction (SEP) and the coefficient of determination in
external validation ðR2

EVÞ (Westerhaus, Workman, Reeves,
& Mark, 2004).

3. Results and discussion

3.1. Reference values

The reference values employed for developing the pre-
dictive models were obtained from chemical analyses car-
ried out at the Regional Laboratory of the Department
of Agriculture and Fishing (Andalusia’s Regional Govern-
ment) (Section 2.4).

Table 2 shows the average values, standard deviation
and the range of reference values for the three constituents
analysed (fat, moisture and protein), for both the calibra-
tion and validation sets.

When the minced sausage meat was stuffed into artificial
guts to complete the process of fermentation and ripening
over 21 days in order to obtain the traditional dry-cured
sausage, the mean values for fat, moisture and protein chan-
ged approximately to 31%, 35% and 27%, respectively.
Therefore, the average values for fat and protein in dry
material should be approximately 48% and 42%, respec-
tively. Bearing in mind the average values of these parame-
ters, according to the Spanish legislation governing quality
categories based on analytical composition, they would be
classified as extra quality (BOE 21/03/1980). However, the
experimental group, as a whole, spans a wide range,
scatter corrections applied to the spectra.

Validation set

e N Mean SD Range

31.7 20 20.29 7.44 9.5–30.9
68.4 20 58.89 5.48 51–67.1
20.5 20 16.9 2.28 13.9–21.6
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representing a great deal of the variability found in the man-
ufacturing of these sausages in the Spanish meat industry.

3.2. Root mean squared (RMS) values

The procedure described in Section 2.5.2 was used to
obtain a cut-off value for the RMS statistic (RMScut off).
Table 3 shows the RMScut off values obtained in the differ-
ent sample presentations, together with the percentage of
spectra eliminated in each of them by surpassing the said
limit (RMScut off).

The Up-view analysis mode establishes very slight differ-
ences between RMScut off values; however, major differ-
ences were observed between the two types of samples
with the Down-view mode. Therefore, this mode has
greater sensitivity in the acquisition of spectra with regard
to product variation.

On the other hand, lower RMScut off values were
obtained using the Down-view analysis mode on both types
of products. So, this analysis mode gives greater similarity
between the spectra of a single sample (lower RMScut off

values). Once the spectra that were over the RMScut off

value were eliminated, the average was obtained of the rest
of the spectra in each sample in order to obtain a represen-
tative spectrum of the samples. As seen in Table 3, the per-
centage of spectra eliminated in each sample presentation
was between 21.4% (MD) and 23.5% (HU). Bearing in
mind that, in each sample presentation, a total of 500 spec-
tra were obtained, over 100 were eliminated from each of
them. Despite this, no sample was completely eliminated,
since at least one of them had two spectra readings.

3.3. Spectra interpretation

Fig. 3 shows the average spectra of the four sample
presentations.

All the spectra were trimmed at the ends (400–515 nm;
1650–1700 nm) because of the low repeatability in these
areas. The four presentations follow similar patterns,
although a grouping into product type (minced and homog-
enised) can be discerned, with visual differences between the
two. This grouping is more noticeable for minced samples,
with minor differences between the average spectra ana-
lysed with both modes of analysis (MD and MU).

A visual study of spectra revealed that there were funda-
mentally four important absorption bands in the four sam-
Table 3
RMScut off and percentage of eliminated spectra (>RMScut off) in the
sample presentations studied

Up-view mode Down-view mode

RMScut off %Spectra >
RMScut off

RMScut off %Spectra >
RMScut off

Minced
samples

25,500 21.6 20,000 21.4

Homogenized
samples

26,500 23.5 10,500 222.2
ple presentations. In the visible band, there was one
particularly noticeable band, between 560 and 585 nm.
Within this range, absorptions are found related to muscle
pigments (Cozzolino, Barlocco, Vadell, Ballesteros, & Gal-
lieta, 2003; Cozzolino & Murray, 2004). Hence, this band
can be explained by the blue region of the spectrum due
to heme proteins, oxymyoglobin and myoglobin (Cozzo-
lino & Murray, 2002; Mitsumoto, Maeda, Mitsuhashi, &
Ozawa, 1991).

Within the 965–1020 nm range, an absorption band in
the transition area of the visible to near infrared zone is
detected. This band is most likely due to water (Osborne,
Fearn, & Hindle, 1993), related to the third overtone (Coz-
zolino & Murray, 2004).

In the NIR region, an absorption band 1195–1230 nm is
observed, with a peak at 1215 nm. At wavelengths close to
1200 nm, the CAH bonds, which are a fundamental constit-
uent of fatty acid molecules, absorb strongly (Willians &
Norris, 1987). Specifically, Shenk, Workman, and Wester-
haus (2001) link the place, where the greatest intensity is
achieved in this band (1215 nm) with the structure of
CH2. These authors relate the absorbancies of 1195 nm
and 1225 nm to CH3 and CH2, respectively. So, around
1200 nm, significant information is found related to fat
(CH stretch second overtone). The final important band
was observed at around 1450 nm. Shenk et al. (2001) relate
this region to combination bands of the bond CAH (CH2 at
1440 nm and aromatic structure at 1446 nm), OH stretch
first overtone and C@O stretch third overtone (1450 nm),
and NH stretch first overtone (urea at 1460 nm and CONH2

at 1463 nm). In meat products, this band has been linked
with water due to the OH bond (Cozzolino & Murray,
2004; Hoving-Bolink et al., 2004; Leroy et al., 2003; Liu
& Chen, 2001; Realini, Duckett, & Windham, 2004).

3.4. Principal component analysis

Principal component analysis (PCA) was applied to the
over group of each presentation. The Mahalanobis
distance was calculated from the centroid of each sample,



Table 4
Characterisation of selected equations for each sample presentation
(Minced Down-view MD, Minced Up-view MU, Homogenised Down-
view HD, and Homogenised Up-view HU) and constituent

MD MU HD HU

Fat
N 77 74 77 77
Factors 7 3 3 4

a

V. Ortiz-Somovilla et al. / Food Chemistry 101 (2007) 1031–1040 1037
defined by its population. By applying the limit discussed in
Section 2.5.3 (H > 3), the possible appearance of spectral
outliers was detected. An anomalous sample only occurred
in one sample presentation (Minced Up-view, MU)
although, in minced samples analysed in the Down-view
mode, two displayed a value very close to the limit
(H = 2.98). This same situation also occurred in a homog-
enised sample analysed in the Down-view mode (H = 2.93).
Togersen, Isaksson, Nilsen, Bakker, and Hildrum (1999)
did not discover any apparent outliers in the PCA they
conducted on meat samples (fresh ground pork and beef).

The number of principal components (PCs) recom-
mended by the software varied between 9 (minced samples,
Down and Up-view) and 10 (homogenised samples, Down
and Up-view). In all cases, the variance explained by the
PCs selected was found to be close to 100% (from 99.5%
for MU to 99.7% for HD and HU). Fig. 4 shows the evolu-
tion of the variance explained by the PCA as PCs were added.

Cozzolino and Murray (2004), when carrying out a PCA
on animal meat muscle samples (100 of beef and 140 of
lamb), obtained similar variance accumulated as the PCs
were added. For instance, with the first three PCs, Cozzolino
and Murray (2004) obtained 95% of variance explained. In
this study, the first three PCs explained an accumulated
variance of between 93.2% (HD) and 96.3% (MD).

3.5. Prediction equations

3.5.1. Characterisation of predictive models

The treatments described in Section 2.5.4, were then
applied in order to calculate the equations in each sample
presentation.

The greatest number of samples excluded in the calibra-
tion development process because of chemical anomalies
(T) occurred in the MU samples. This number is deter-
mined by subtracting the number of samples selected for
each predictive model and the number of spectral anoma-
lies (H) from the initial calibration group (80). This is
due to the greater heterogeneity of the minced samples,
and the different strategies that the instrument used to store
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Fig. 4. Accumulated variance of each sample presentation with the
addition of the principal components.
information, depending on which analysis mode was used
(Down or Up-view).

Table 4 shows the characteristics of the equations
selected for each constitution, along with the number of
samples that make up each model (N), the number of fac-
tors or regression terms, type of regression (PCR or MPLS
regression) and mathematical treatment applied to the sig-
nal (derivatives and scatter correction).

There was no homogeneity observed with regard the
number of factors that made up the models – varying
between 2 and 9 – or in the derivative treatment used on
the signal. The regression method used for all the equations
selected was minimum partial least squares (MPLS), except
for the constituent fat in minced samples (Down and Up-
view), in which principal component regression achieved
better results.

The scatter correction treatment selected was SNVDT,
except for fat in MU, where MSC treatment achieved bet-
ter behaviour.

Chan et al. (2002) obtained PLS predictive models of
fat, moisture and protein from whole pork loin samples
with a Perten DA-7000 spectrometer in the Up-view mode.
Their best calibration models were a 10,13,12-factor PLS
model for fat, moisture and protein, respectively, with first
and second derivative pre-processing.

In this study, the PLS factors with the Up-view mode
ranged from 2 to 4 PLS; therefore the complexity of the
models was lower. On the other hand, in the selected mod-
els, greater variation was found with regard to types of
derivative treatments (none, first, second and third) when
compared to those applied by Chan et al. (2002), who
selected first and second derivatives.
Regression PCR PCR MPLS MPLS
Derivative 2,4,4 3,10,5 2,4,4 0,0,1
Scatter correctionb SNVDT MSC SNVDT SNVDT

Moisture
N 77 75 79 78
Factors 6 2 9 3
Regressiona MPLS MPLS MPLS MPLS
Derivative 2,4,4 2,5,5 0,0,1 3,5,5
Scatter Correctionb SNVDT SNVDT SNVDT SNVDT

Protein
N 78 75 77 79
Factors 5 4 2 2
Regressiona MPLS MPLS MPLS MPLS
Derivative 1,4,4 1,5,5 2,4,4 2,5,5
Scatter correctionb SNVDT SNVDT SNVDT SNVDT

a PCR: principal component regression; MPLS: modified partial least
squared.

b SNVDT: standard normal variate and de-trending; MSC: multiplica-
tive scatter correction.



1038 V. Ortiz-Somovilla et al. / Food Chemistry 101 (2007) 1031–1040
Anderson and Walker (2003) also applied second deriv-
atives in order to obtain on-line analysis PLS models for
ground beef with nominal 50% and 15% fat contents. These
authors also used a Perten DA-7000 spectrometer, with
special position, similar to the Down-view mode.

Fumière et al. (2000) used similar spectral treatments
(scatter corrections and derivatives) to those used in this
study in their attempt to authenticate cut pieces of chicken
meat, using a Perten DA-7000 in the Up-view mode. In this
case, their best models were obtained with first and second
derivatives, along with SNV and SNVDT scatter correc-
tions (legs with skin 1,5,3-SNV; skinless breasts 2,1,1-
SNVDT; carcasses with skin 1,5,3-SNV).

3.5.2. Evaluation of predictive models

3.5.2.1. General. Table 5 shows the statistics of the equa-
tions designed to predict fat, moisture and protein, both
in calibration and validation (cross and external), for the
four sample presentations.

3.5.2.2. Differences between constituents (fat, moisture and

protein) and products (homogenized and minced) on the
predictive models. With regard to the nutritional parame-
ters fat and moisture, the coefficients of determination
(R2) selected for both calibration and validation were over
0.9 in all the equations. Shenk and Westerhaus (1996)
reported that any equations with values achieved that were
equal to or higher than this value were extremely accurate.
So far, from the other statistics used to evaluate the models
(SEC, SECV, RPD and SEP), we can see that there are dif-
ferences between the homogenised and minced sample pre-
sentations. The homogenised samples presented models
with lower typical errors (SEC, SECV and SEP), and
higher RPD values, and are therefore more robust models.
Table 5
Statistics of selected equations in calibration (standard error of calibration, SEC
error of cross validation, SECV; coefficient of determination in cross validation
error of prediction, SEP; coefficient of determination in external validation, R

Range (%) SD Calibration

SEC (%) R2

Fat (%)
MD 8–31.7 7.36 1.28 0.97
MU 8–31.7 7.34 1.16 0.98
HD 8–31.7 7.29 0.8 0.99
HU 8–31.7 7.26 0.81 0.99

Moisture (%)
MD 50.2–68.4 5.37 0.74 0.98
MU 50.2–68.4 5.32 0.95 0.97
HD 50.2–68.4 5.31 0.71 0.98
HU 50.2–68.4 5.27 0.73 0.98

Protein (%)
MD 13.6–20.5 1.97 0.54 0.93
MU 13.7–20.3 1.9 0.56 0.91
HD 13.6–20.5 1.98 0.51 0.93
HU 13.6–20.5 1.96 0.57 0.92
Consequently, greater heterogeneity is the product entailed
a loss of accuracy in the equations; the highest typical error
or prediction was obtained for the minced samples ana-
lysed in the Up-view mode (SEP = 1.41%).

This loss of accuracy in the prediction models for fat in
minced product versus homogenised product was also
observed for moisture, as we can see in Table 5. The great
typical error obtained for this constituent was
SEP = 1.01%, lower than that for fat (SEP = 1.41%). This
comparison is made in absolute values, since the predictive
range of fat is higher than that for moisture (fat 8.2–31.7%
vs. moisture 50.2–68.4%); hence these prediction errors will
be of a similar magnitude if the model’s predictive range is
taken into account.

The statistics obtained in the different sample presenta-
tions for the nutritional compound protein did not reveal
any differentiation between homogenised and minced sam-
ples, as they did for fat and moisture. In calibration and
cross validation, lower values were found for the typical
errors, SEC = 0.51–0.57%, SECV = 0.53–0.65%, of the
three predicted constituents. However, once again, it is
important to underline that this assessment of the typical
errors was carried out in terms of absolute values, since
the predictive range in protein is considerably lower than
that for moisture, and especially for fat. Furthermore,
lower typical errors of prediction in external validation
(SEP) were obtained for the parameter moisture
(SEP = 0.76–0.77%) At the same time, the coefficients of
determination obtained for protein in the four sample pre-
sentations (both in calibration and cross and external vali-
dation) were the lowest of the three constituents. The
predictive capacity of the models selected for protein might
be lower than those of fat and moisture. This evaluation
gains greater force when observing the RPD statistic,
; coefficient of determination in calibration, R2), cross validation (standard
, r2; residual predictive deviation, RPD) and external validation (standard

2
EV)

Validation

Cross External

SECV (%) r2 RPD SEP(%) R2
EV

1.35 0.97 5.45 1.38 0.97
1.17 0.97 6.27 1.41 0.97
0.87 0.99 8.38 0.94 0.98
0.89 0.99 8.16 1.18 0.98

0.95 0.97 5.65 1.01 0.97
0.99 0.96 5.37 1 0.97
0.84 0.98 6.32 0.77 0.98
0.79 0.98 6.59 0.76c 0.98

0.61 0.9 3.23 0.83 0.87
0.65 0.88 2.92 0.84 0.87
0.53 0.93 3.74 0.87 0.86
0.6 0.91 3.27 0.87 0.86
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which gave the lowest values for protein. Even the equation
selected for protein for the minced samples analysed in the
Up-view mode (MU), yielded a value that was just below
(RPD = 2.92) the limit established by Williams and Sober-
ing (1996) (RPD > 3) for a model to be classified as having
very good predictive characteristics. Anderson and Walker
(2003) obtained predictions for fat using ground beef in a
sample presentation similar to the Minced Down-view
(MD) used in this study, as well as a similar variation range
(Anderson et al., 7.2–24.4% vs MD, 8–31.7%). They
obtained values of r2 = 0.96 and SECV = 1% (cross valida-
tion), and R2

EV ¼ 0:83 and SEP = 2.15% (external valida-
tion). Comparing these values with those shown in Table
5 for the MD sample presentation, a great similarity is
observed between the values for r2; Anderson and Walker
(2003) obtained lower values for SECV (Anderson et al.,
SECV = 1% vs. MD, SECV = 1.35%). However, the values
obtained in the present study in external validation (SEP),
were considerably lower (Anderson et al., SEP = 2.15% vs.
MD, SEP = 1.38%). This loss of accuracy could be due to
the fact that Anderson and Walker (2003) designed a spe-
cific analysis device adapted to a transportation line, and
did not use the natural position of the equipment.

Chan et al. (2002) included predictions of fat, moisture
and protein in their study of pork quality characteristics,
using the Up-view mode. The values obtained in cross vali-
dation (r2) were 0.76, 0.8 and 0.69, and SECV, 0.62%, 0.58%
and 0.43%, respectively, for fat, moisture and protein. In the
same order, in external validation, they obtained R2

EV of 0.61,
0.69 and 0.7, and SEP of 0.62%, 0.63% and 0.42%. Table 4
(Up-view modes: MU, HU) shows how, in both cross vali-
dation (r2) and external validation ðR2

EVÞ, better correlations
were obtained between predicted and observed values, in the
three constituents, than those obtained by Chan et al. (2002).
However, the values obtained by these authors for SECV
and SEP were lower than those obtained in this current
study with MU and HU for the three constituents, and clo-
ser to those obtained for the homogenised product (HU).
These differences are partly rooted in the fact that Chan
et al. (2002) used pork loin samples, a more homogeneous
product than that used in this study, but were mainly due
to the lower range of variation and standard deviation
of their reference values, especially for moisture (range
67.1–79%, SD = 1.37%) and fat (range 19.3–24.3%, SD =
0.8%), as we can see Table 5.

Kang, Park, and Choy (2001) obtained predictions for
fat, moisture and protein in ground pork sausages using
a NIR spectrophotometer with a greater scanning range
(400–2500 nm). Their reference values were very similar
to those described here. The results obtained in the equa-
tions were also similar to the minced sample presentations
(MD, MU), although less accurate. This can be quantified
by comparing the values for MD and MU (Table 5) in
external validation with those obtained by Kang et al.
(2001); they obtained R2

Ev of 0.88, 0.93 and 0.54 for fat,
moisture and protein, respectively, and SEP of 1.53%,
1.15% and 1.12% in the same order.
3.5.2.3. Differences between modes of analyses (Down-view

and Up-view) on the predictive models. To appreciate simi-
larities and differences between both modes of analyses
(Down and Up-view modes) for the three nutritional
parameters predicted, the SEC (calibration stage), SECV
(cross validation stage) and SEP (external validation stage)
are inspected in Table 5.

The differences between the two modes of analysis for
the constituent fat in homogenised samples were barely
noticeable in calibration (SECHD = 0.8% vs. SECHU =
0.81%) and cross validation (SECVHD = 0.87% vs.
SECVHU = 0.89%). On the other hand, the difference in
accuracy of the models in external validation is taken into
account, and the Down-view analysis mode gave lower pre-
diction errors (SEPHD = 0.94% vs. SEPHU = 1.18%). In the
predictions of fat in the minced product, the Up-view mode
gave better values in calibration (SECMD = 1.28% vs.
SECMU = 1.16%) and cross validation (SECVMD = 1.35%
vs. SECVMU = 1.17%). However, the behaviours of the
prediction models in external validation were similar for
both modes of analysis (SEPMD = 1.38% vs. SEPMU =
1.41%).

For the parameter moisture, the values observed were
notably different between the two modes of analysis for
any statistic in the homogenised product (Table 5). In the
minced product, the Down-view model selected for
moisture particularly stood out, yielding better values in
calibration (SECMD = 0.74% vs. SECMU = 0.95%), but
barely noticeable differences in cross (SECVMD = 0.95%
vs. SECVMU = 0.99%) and external validation (SEPMD =
1.01% vs. SEPMU = 1%).

For protein, in both the homogenised and minced
products, a slight improvement of the model used with
Down-view was observed in calibration (SECHD = 0.51%
vs. SECHU = 0.57%; SECMD = 0.54% vs. SECMU = 0.56%)
and cross validation (SECVHD = 0.53% vs. SECVHU =
0.6%; SECVMD = 0.61% vs. SECVMU = 0.65%), although
identical values were acquired in external validation
(SEP = 0.87%) for the homogenised product, and practi-
cally identical values for the minced product (SEPMD =
0.83% vs. SEPMU = 0.84%).

Thus, for the homogenised samples, when dealing with
fat predictions, it seems slightly more advisable to use the
Down-view rather than the Up-view mode of analysis,
given the differences in behaviour of the external predic-
tion models (evaluated by SEP). These differences are
not really noticeable in moisture and protein predictions
for the homogenised product, or for the three constituents
in the minced product. Hence, in this case, it would be
more advisable to use the mode that allows less handling
of the product as well as greater simplicity of analysis.
Given these criteria, it would be sensible to use the Up-
view mode of analysis, since it would only be necessary
to place fresh meat mass on the circular glass plate
(Fig. 1B) in order to analyse it, without having to put it
into an analysis device (capsule) as with the Down-view
mode.
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